

Metaphors in Pre-Trained Language Models: Probing and Generalization Across Datasets and Languages

Ehsan Aghazadeh*, Mohsen Fayyaz*, Yadollah Yaghoobzadeh University of Tehran

Metaphor definition

• Conceptual Metaphor Theory [1]

Motivation

- Metaphors are essential in human communication and constructing human-like computational systems.
- The creativity and generalization to new problems depend on the metaphors.

Do pre-trained language models represent metaphors?

Our methodology

Datasets

VUA Verbs	He [finds] ₁ it hard to communicate with people, not least his separated parents $\rightarrow 1$ He finds it hard to [communicate] ₁ with people, not least his separated parents $\rightarrow 0$
VUA POS	They picked up power from a [spider] ₁ 's web of unsightly overhead wires . \rightarrow 1
	They picked up power from a spider 's web of unsightly overhead [wires] ₁ . \rightarrow 0
TroFi	"Locals [absorbed] ₁ a lot of losses, "said Mr. Sandor of Drexel \rightarrow nonliteral
	Vitamins could be passed right out of the body without being [absorbed] $_1 \rightarrow$ literal
	Lawful gun ownership is not a [disease] ₁ . \rightarrow 3.0
LCC	But the Supreme Court says it's not a way to [hurt] ₁ the Second Amendment $\rightarrow 2.0$
	Is he angry that gun rights [progress] ₁ has been done without him? \rightarrow 1.0
	I mean the 2nd amendment [suggests] ₁ a level playing field for all of us. $\rightarrow 0.0$
-	

- ★ Positive and Negative examples are balanced
- ★ LCC dataset has four languages (English, Spanish, Russian, Farsi)
- ★ LCC scores less than 0.5 are considered literal and more than 1.5 non-literal

Probing

Evaluating linguistic knowledge in neural representations

Conventional Probing

Conventional probing

- To answer:
 - Do PLMs represent metaphorical information within their representations?
 - If so, how is it distributed throughout their layers?

- Methods
 - Edge probing [1]
 - o MDL probing [2]

pages 183-196, Online. Association for Computational Linguistics.

Conventional Probing

Conventional probing - results

	Baseline		BERT		RoBERTa		ELECTRA	
Dataset	Acc.	Comp.	Acc.	Comp.	Acc.	Comp.	Acc.	Comp.
LCC (en)	74.86	1.052	88.25	1.856	88.06	1.965	89.30	2.055
TroFi	67.34	1.014	68.58	1.074	68.46	1.096	68.07	1.083
VUA POS	65.92	1.03_{0}	80.32	1.435	81.72	1.486	83.03	1.514
VUA Verbs	65.97	1.049	78.29	1.289	78.88	1.345	79.96	1.314

Conclusions

- PLMs do represent metaphors
- RoBERTa and ELECTRA >>> BERT
 - Better pre-training objectives 🖒
 - Extensive pre-training data 👍

Conventional Probing

Dataset Luci

Layer-wise analysis

- Conclusions
 - Middle layers > Deeper layers
 - Not highly contextualized
 - Forecasting source domain **X** target domain

Classifier (XLM-R) Language 2 FA

Cross-lingual generalization

- Are metaphors transferable across languages?
- Using edge probing
 - train a classifier on language S
 predict metaphoricity in language T.

Cross-lingual generalization

Cross-lingual generalization - results

		Train Language			
		English	Spanish		
Test	English	85.14 (65.37)	79.31 (52.71)		
Language	Spanish	79.40 (53.17)	84.59 (66.09)		

★ XLM-R (randomly initialized XLM-R)

Conclusions

- XLM-R >>> Random
 - Transferability of metaphorical information between languages 🕙
 - Capacity of XLM-R 👍

Cross-dataset generalization

Are metaphors transferable across datasets?

- Using edge probing
 - train a classifier on dataset S
 to predict metaphoricity in dataset T.

Dataset 1 Classifier (BERT) Dataset 2 Test

Cross-dataset generalization - results

		Train Dataset		
		LCC(en)	VUA Verbs	
Test Dataset	LCC(en)	84.26 (54.93)	70.37 (50.14)	
	VUA POS	62.23 (51.47)	71.6 (53.47)	
	VUA Verbs	60.20 (50.88)	75.21 (60.03)	

[★] BERT (randomly initialized BERT)

Conclusions

- \circ PLM > Random
 - Generalizable metaphorical information ✓
- \circ Consistent data annotation \rightarrow better results

Conclusion

- Contextual representations in PLMs do encode metaphorical knowledge
- Metaphorical knowledge is encoded better in the middle layers of PLMs
- Metaphorical knowledge is transferable between languages and datasets ~ Consistency of the annotation

THANK YOU!

eaghazade1998 @ut.ac.ir mohsen.fayyaz77@ut.ac.ir y.yaghoobzadeh @ut.ac.ir

Paper: https://arxiv.org/abs/2203.14139

Code: github.com/EhsanAghazadeh/Metaphors_in_PLMs

